现有的最新3D点云实例分割方法依赖于基于分组的方法,该方法指向获得对象实例。尽管产生准确的分割结果方面有所改善,但这些方法缺乏可扩展性,通常需要将大量输入分为多个部分。为了处理数百万点的场景,现有的最快方法软组\ cite {vu2022222222222222222222222222222222222222ggroup}需要数十秒钟,这是满意的。我们的发现是,$ k $ neart的邻居($ k $ -nn)是分组的先决条件,是计算瓶颈。这种瓶颈严重使现场的推理时间恶化了很多。本文提出了软组++来解决此计算瓶颈,并进一步优化了整个网络的推理速度。 SoftGroup ++建立在软组上,这在三个重要方面有所不同:(1)执行OCTREE $ K $ -NN而不是Vanilla $ k $ -nn,以将时间复杂性从$ \ Mathcal {o}(n^2)缩短到$ \ Mathcal {o}(n \ log n)$,(2)执行金字塔缩放,适应性下降样本骨干输出以减少$ k $ -nn和分组的搜索空间,并且(3)执行后期的Devoxelization,延迟了Voxels的转换指向模型的结束,以使中间组件以低计算成本运行。在各种室内和室外数据集上进行了广泛的实验,证明了拟议的软组++的功效。值得注意的是,SoftGroup ++在一个前方的情况下通过单个前方进行了大量的场景,而无需将输入分为多个部分,从而丰富了上下文信息。特别是,SoftGroup ++达到2.4点AP $ _ {50} $改进,而$ 6 \ $ 6 \ times $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $。代码和训练有素的模型将公开可用。
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Artificial intelligence methods including deep neural networks (DNN) can provide rapid molecular classification of tumors from routine histology with accuracy that matches or exceeds human pathologists. Discerning how neural networks make their predictions remains a significant challenge, but explainability tools help provide insights into what models have learned when corresponding histologic features are poorly defined. Here, we present a method for improving explainability of DNN models using synthetic histology generated by a conditional generative adversarial network (cGAN). We show that cGANs generate high-quality synthetic histology images that can be leveraged for explaining DNN models trained to classify molecularly-subtyped tumors, exposing histologic features associated with molecular state. Fine-tuning synthetic histology through class and layer blending illustrates nuanced morphologic differences between tumor subtypes. Finally, we demonstrate the use of synthetic histology for augmenting pathologist-in-training education, showing that these intuitive visualizations can reinforce and improve understanding of histologic manifestations of tumor biology.
translated by 谷歌翻译
在本文中,我们介绍Bayesldm,这是一个用于贝叶斯纵向数据建模的系统,该系统由高级建模语言组成,具有针对复杂的多变量时间序列数据建模的特定功能,并与编译器相结合,可以生成优化的概率程序代码,以在指定模型中执行指定的推理。 Bayesldm支持贝叶斯网络模型的建模,其特定关注动态贝叶斯网络(DBN)的高效,声明性规范。 Bayesldm编译器将模型规范与可用数据和输出代码相结合,用于执行贝叶斯推断,以同时处理丢失的数据,同时处理未知模型参数。这些功能有可能通过抽象产生计算有效的概率推断代码的过程来显着加速域中的迭代建模工作流,这些迭代建模工作流程涉及复杂纵向数据的分析。我们描述了Bayesldm系统组件,评估表示和推理优化的效率,并提供了该系统在分析异质和部分观察到的移动健康数据的应用示例。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
3D光学相干断层扫描图像中视网膜流体的准确分割是诊断和个性化眼部疾病的关键。尽管深度学习在这项任务上取得了成功,但受过训练的监督模型通常会因不像标记示例的图像而失败,例如对于使用不同设备获取的图像。我们在此提出了一个新型的半监督学习框架,用于从新未标记的域分割体积图像。我们共同使用受监督和对比度学习,还引入了一种对比配对方案,该方案利用3D中附近切片之间的相似性。此外,我们建议通过渠道聚合作为对比特征图投影的常规空间释放聚合的替代方法。我们评估了从(标记的)源域对(未标记的)目标域的域适应方法,每个方法都包含具有不同采集设备的图像。在目标域中,我们的方法获得了比SIMCLR(最先进的对比框架)高13.8%的骰子系数,并导致结果可与该领域中有监督的训练的上限相当。在源域中,我们的模型还通过成功利用来自许多未标记的图像的信息,将结果提高了5.4%。
translated by 谷歌翻译
尽管当前的视觉算法在许多具有挑战性的任务上都表现出色,但尚不清楚他们如何理解现实世界环境的物理动态。在这里,我们介绍了Physion,一种数据集和基准,用于严格评估预测物理场景如何随着时间而发展的能力。我们的数据集具有对各种物理现象的现实模拟,包括刚性和软体体碰撞,稳定的多对象配置,滚动,滑动和弹丸运动,因此比以前的基准提供了更全面的挑战。我们使用Physion来基准一套模型,其体系结构,学习目标,投入输出结构和培训数据各不相同。同时,我们在同一场景上获得了人类预测行为的精确测量,从而使我们能够直接评估任何模型能够近似人类行为的效果。我们发现,学习以对象为中心的表示的视觉算法通常优于那些没有人的表现,但仍未达到人类绩效。另一方面,绘制具有直接访问物理状态信息的神经网络的表现效果更好,并且做出与人类制作的预测更相似。这些结果表明,提取场景的物理表征是在视力算法中实现人类水平和类似人类的物理理解的主要瓶颈。我们已公开发布了所有数据和代码,以促进使用物理以完全可重现的方式对其他模型进行基准测试,从而使对视觉算法的进度进行系统的评估,这些算法像人们一样坚固地了解物理环境。
translated by 谷歌翻译
Here, we demonstrate how machine learning enables the prediction of comonomers reactivity ratios based on the molecular structure of monomers. We combined multi-task learning, multi-inputs, and Graph Attention Network to build a model capable of predicting reactivity ratios based on the monomers chemical structures.
translated by 谷歌翻译
The recent increase in public and academic interest in preserving biodiversity has led to the growth of the field of conservation technology. This field involves designing and constructing tools that utilize technology to aid in the conservation of wildlife. In this article, we will use case studies to demonstrate the importance of designing conservation tools with human-wildlife interaction in mind and provide a framework for creating successful tools. These case studies include a range of complexities, from simple cat collars to machine learning and game theory methodologies. Our goal is to introduce and inform current and future researchers in the field of conservation technology and provide references for educating the next generation of conservation technologists. Conservation technology not only has the potential to benefit biodiversity but also has broader impacts on fields such as sustainability and environmental protection. By using innovative technologies to address conservation challenges, we can find more effective and efficient solutions to protect and preserve our planet's resources.
translated by 谷歌翻译
We present the interpretable meta neural ordinary differential equation (iMODE) method to rapidly learn generalizable (i.e., not parameter-specific) dynamics from trajectories of multiple dynamical systems that vary in their physical parameters. The iMODE method learns meta-knowledge, the functional variations of the force field of dynamical system instances without knowing the physical parameters, by adopting a bi-level optimization framework: an outer level capturing the common force field form among studied dynamical system instances and an inner level adapting to individual system instances. A priori physical knowledge can be conveniently embedded in the neural network architecture as inductive bias, such as conservative force field and Euclidean symmetry. With the learned meta-knowledge, iMODE can model an unseen system within seconds, and inversely reveal knowledge on the physical parameters of a system, or as a Neural Gauge to "measure" the physical parameters of an unseen system with observed trajectories. We test the validity of the iMODE method on bistable, double pendulum, Van der Pol, Slinky, and reaction-diffusion systems.
translated by 谷歌翻译